Binaural response organization within a frequency-band representation of the inferior colliculus: implications for sound localization.

نویسندگان

  • J J Wenstrup
  • L S Ross
  • G D Pollak
چکیده

The auditory system of the mustache bat (Pteronotus parnellii) contains a disproportionately large representation of a narrow frequency band, corresponding to the dominant, 60 kHz component of its echolocation signal. In the inferior colliculus (IC), the 60 kHz representation comprises an architectonically distinct region called the dorsoposterior division (DPD), which is accessible for detailed physiological study. We examined the topographic distribution of binaural responses within this one frequency-band representation of the inferior colliculus. We describe two primary results. First, neurons with different binaural response properties are spatially segregated into one of four binaural response-specific regions of the DPD: a large region of monaural (EO) responses; two regions containing neurons excited by sound from both ears (EE); and a region containing neurons excited by one ear and inhibited by the other (EI). Regions dominated by 60 kHz EI responses are also found in the lateral extremity of the IC, probably within the external nucleus. These results demonstrate functionally defined subdivisions in a single frequency-band representation of the IC. Moreover, they suggest that brain stem auditory projections to the DPD and/or intrinsic connections within the DPD are highly organized. Second, within the EI region of the DPD, there is a systematic shift in the sensitivity of EI multiunit responses to interaural intensity disparities (IIDs). Dorsally, EI neurons are suppressed only by relatively loud ipsilateral sounds, and there is a systematic decrease in the relative ipsilateral intensity required for suppression at more ventral recording sites. This result demonstrates that neurons sensitive to a sound localization cue are systematically organized within a frequency-band representation of the inferior colliculus. It has implications for the manner in which the location of a sound source is encoded within the primary auditory pathway.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Title: Comparison of Bandwidths in the Inferior Colliculus and the Auditory Nerve. I: Measurement Using a Spectrally Manipulated Stimulus

A defining feature of auditory systems across animal divisions is the ability to sort different frequency components of a sound into separate neural frequency channels. Narrowband filtering in the auditory periphery is of obvious advantage for the representation of sound spectrum, and manifests itself pervasively in human psychophysical studies as the critical band. Peripheral filtering also al...

متن کامل

Comparison of bandwidths in the inferior colliculus and the auditory nerve. I. Measurement using a spectrally manipulated stimulus.

A defining feature of auditory systems across animal divisions is the ability to sort different frequency components of a sound into separate neural frequency channels. Narrowband filtering in the auditory periphery is of obvious advantage for the representation of sound spectrum and manifests itself pervasively in human psychophysical studies as the critical band. Peripheral filtering also alt...

متن کامل

Interaural Level Difference-Dependent Gain Control and Synaptic Scaling Underlying Binaural Computation

Binaural integration in the central nucleus of inferior colliculus (ICC) plays a critical role in sound localization. However, its arithmetic nature and underlying synaptic mechanisms remain unclear. Here, we showed in mouse ICC neurons that the contralateral dominance is created by a "push-pull"-like mechanism, with contralaterally dominant excitation and more bilaterally balanced inhibition. ...

متن کامل

Representation of sound localization cues in the auditory thalamus of the barn owl.

Barn owls can localize a sound source using either the map of auditory space contained in the optic tectum or the auditory forebrain. The auditory thalamus, nucleus ovoidalis (N.Ov), is situated between these two auditory areas, and its inactivation precludes the use of the auditory forebrain for sound localization. We examined the sources of inputs to the N.Ov as well as their patterns of term...

متن کامل

Response of cat inferior colliculus neurons to binaural beat stimuli: possible mechanisms for sound localization.

The interaural phase sensitivity of neurons was studied through the use of binaural beat stimuli. The response of most cells was phase-locked to the beat frequency, which provides a possible neural correlate to the human sensation of binaural beats. In addition, this stimulus allowed the direction and rate of interaural phase change to be varied. Some neurons in our sample responded selectively...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 6 4  شماره 

صفحات  -

تاریخ انتشار 1986